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Introduction — habits

HABITS will take ‘track and trace’ (T&T) data collected in a transport policy context
and explore the challenges, opportunities, methodologies and policy implications
related to its use in reducing individual health burdens

Working with Newcastle City Council, HABITS utilises T&T data
collected in a new travel app.

Ongoing schemes within Newcastle will be studied to provide insight
into policy benefits

Opportunity to show benefits of initiatives to public
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Research Objectives

Demonstrate how the linking of high-resolution location data and other
databases / models can support better policy making:

Linking of location, activity and air quality data can be used to more
accurately quantify individual exposure to air pollution

Linking of location-activity data and existing health databases / models can
support better targeted policies

Develop insights on the role of new data in decision-support and policy making
in the public sector.
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Background: Pollution

In the UK: outdoor air pollution
exposure contributes to 40,000
deaths each year [1].

Exposure calculated using residential
location substantially underestimates
the effect [2-4]

Health Effects Institute: personal
exposure and time-activity data are
“best” [5]
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Background: Pollution

Can high-resolution location and
activity data, coupled with reliable
models of air quality, be used to
more accurately quantify the true
exposure of individuals to air
pollution and derive robust spatio-
temporally explicit policies to reduce
this disease burden.
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Source: Park and Kwan (2017)

Time

How to Quantity

Exposure? e

Following: Park, Yoo Min, and Mei-Po Kwan (2017).
Individual Exposure Estimates May Be Erroneous When .
Spatiotemporal Variability of Air Pollution and Human oo
Mobility Are Ignored. Health & Place 43: 85-94  ~===oooooee

But with a larger, real (not simulated), more oo
representative sample ~ oeeeeeeees

Data requirements: e

Time-activity (aka ‘Track and Trace’)data .
Spatio-temporal pollution estimates
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Data Requirement 1: Smarter

Time-Activity Patterns -

€ Kacter
Smart-phone app built in collaboration —9

with Newcastle City Council
Detects when the user is moving and e

% 0 wem

tracks journeys

Estimates mode of travel

Rewards for using active / sustainable
modes of travel g o

https://play.google.com/store/apps/de
tails?id=nl.mobidot.gosmarter
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Data Requirement 2: Pollution Estimates
DEFRA

Department for Environment, Food and Rural Affairs produce pollution
estimates (measured and modelled)

EU requirement for air quality compliance
http://cdr.eionet.europa.eu/gb/eu/aqd

High quality, but sparse spatio-temporal resolution
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Data
Download

4

API

Data Requirement 2: Pollution Estimates
Urban Observatory Sensors

Maintain a large number of environmental sensors in and around
Newcastle, including air quality, traffic, parking, sound, etc.
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Pollution Data (Urban Observatory)

Bespoke data extract
168 NO, and CO sensors
1 year data: September 2016 — September 2017

74M observations (40M NO,)

Variety of sensor models; variable quality
From industry standard to “random noise generators”

Immediate future work: calibration and cleaning

il
o

UNIVERSITY OF LEEDS



g\ [ SO XA NEL AR -/ T
N AN W g 7 .
\ | . Y . -l () : P ‘ :
‘ - o ' ‘- w0 + : ; \_.. '. , y
g | A6 _;;\ :: '

Sae*
o

N

e / A B1600 ' 2 £ \\'A.\ ™

UNIVERSITY OF LEEDS = a " = Leaflet | © OpensStrestMap contributors, CC-BY-SA. _



Frequency

40000 80000

0

3000

1000

0

Histogram of all pollution values

I 1 I I
200 400 600 800

=2%value

All pollution values

1000

0 co

Frequency

40000 80000

0

150 200

100

50

Histogram values < 1000

I 1 I
50 100 150

s2%value[which(s2$value < culoff))

Values < 1000

200




NO2

100 150 200 250 300 350

50

0

Mean weekly pollution by sensor




Source: Park and Kwan (2017)

Pollution Modelling Method:
Cokriging

Interpolate DEFRA and sensor data R

Create a higher-resolution spatiotemporal model of ...
polluton e

Use secondary variates (Urban Observatory data, @~

temperature, etc) that have been sampled more ...
intensely than primary variate (DEFRA)

Repeat for 7 days * 24 hours

Finally — model exposure by overlaying tracedata @ .
with pollution estimates e
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HABITS

Funded through the ESRC Big Data Network 3: New and

Emerging Forms of Data — Policy Demonstrater Projects
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